Муниципальное общеобразовательное бюджетное учреждение средняя общеобразовательная школа с. Воскресенское муниципального района Мелеузовский район Республики Башкортостан

Рассмотрено

на заседании ШМО Протокол № 1 от 28.08 23

Руководитель ШМО

Fi Ulif Ulurruola T.A

Согласовано

Зам. директора по УР

Н.А.Мокшанцева

Утверждаю

Директор МОБУ СОШ

с.Воскресенское

F К Ку**ка**йнева

## РАБОЧАЯ ПРОГРАММА

по учебному предмету «Химия» 8 - 9 классы

Составила учитель химии МОБУ СОШ с.Воскресенское Шлычкова Т.А.

#### Пояснительная записка.

Рабочая программа по учебному предмету «Химия» для 8-9 классов составлена в соответствии с требованиями ФГОС ООО, на основе авторской программы по химии 8—9 классы / Н. Н. Гара. — М. : Просвещение, 2017. Рабочая программа ориентирована на использование учебников: Химия: 8 класс: базовый уровень: учебник для учащихся общеобразовательных учреждений / Г.Е.Рудзитис, Ф.Г.Фельдман. М.: Просвещение, 2017.

Химия: 9 класс: базовый уровень: учебник для учащихся общеобразовательных учреждений / Г.Е.Рудзитис, Ф.Г.Фельдман М.: Просвещение, 2017.

Изучение химии на ступени основного общего образования направлено на достижение пели:

-освоение важнейших знаний об основных понятиях и законах химии, химической символики; развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями

Для достижения цели решаются следующие задачи:

- -овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;
- -воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- -применение полученных знаний и умений для безопасного использования веществ иматериалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека иокружающей среде.

| Место  | предмета | «Химия» в | <i>учебном</i> | плане |
|--------|----------|-----------|----------------|-------|
| 1.1011 |          |           | J 100110111    |       |

| <b>№</b><br>π/π | Класс | Количество<br>часов | Количество контрольных, самостоятельных работ | Количество практических, лабораторных работ |
|-----------------|-------|---------------------|-----------------------------------------------|---------------------------------------------|
| 1               | 8     | 68                  | 3                                             | 6                                           |
| 2               | 9     | 66                  | 3                                             | 7                                           |

При изучении курса проводятся следующие виды контроля: текущий - контроль в процессе изучения темы (устный опрос, письменный, тестирование); итоговый - в концеизучения раздела - контрольная работа, тест. Форма контроля: индивидуальный. Форма проведения промежуточной аттестации — контрольная работа.

Структура рабочей программы:

Пояснительная записка

Планируемые результаты освоения учебного предмета «Химия»

Содержание учебного предмета «Химия»

Тематическое планирование

## Планируемые результаты освоения учебного предмета «Химия»

В соответствии с  $\Phi \Gamma O C$  результаты обучения подразделяются на личностные, метапредметные и предметные.

#### Личностные результаты.

1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость использования русского языка и языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа). Осознание этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества.

- 2. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- 3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к самосовершенствованию; веротерпимость, уважительное нравственному религиозным чувствам, взглядам людей или их отсутствию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского общества и российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества). Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде.
- 4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
- 5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).
- 6. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами; идентификация себя в качестве субъекта социальных освоение компетентностей в сфере организаторской преобразований, деятельности; интериоризация ценностей созидательного отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).
- 7. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.
- 8. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоциональноценностное видение окружающего мира; способность к эмоционально-ценностному освоению мира, самовыражению и ориентации в художественном и нравственном пространстве культуры; уважение к истории культуры своего Отечества, выраженной в том числе в понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностно-значимойценности).
- 9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивнооценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно эстетическому отражению

природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).

- 10. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи
- 11. Развитое эстетическое сознание через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера.

### Метапредметные результаты.

Метапредметные результаты включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные), способность их использования в учебной, познавательной и социальной практике, самостоятельность планирования и осуществления учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками, построение индивидуальной образовательной траектории.

Межпредметные понятия

Условием формирования межпредметных понятий, таких как «система», «факт», «закономерность», «феномен», «анализ», «синтез» «функция», «материал», «процесс»,

является овладение обучающимися основами читательской компетенции, приобретение навыков работы с информацией, участие в проектной деятельности. В основной школе на всех предметах будет продолжена работа по формированию и развитию основ читательской компетенции. Обучающиеся овладеют чтением как средством осуществления своих дальнейших планов: продолжения образования и самообразования, осознанного планирования своего актуального и перспективного круга чтения, в том числе досугового, подготовки к трудовой и социальной деятельности. У выпускников будет сформирована потребность в систематическом чтении как в средстве познания мира и себя в этом мире, гармонизации отношений человека и общества, создания образа

«потребного будущего».

При изучении учебных предметов обучающиеся усовершенствуют приобретенные на первом уровне навыки работы с информацией и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

- систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;
- выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий концептуальных диаграмм, опорных конспектов);
- заполнять и/или дополнять таблицы, схемы, диаграммы, тексты.

В ходе изучения всех учебных предметов обучающиеся приобретут опыт проектной деятельности, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности. В процессе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные задаче средства, принимать решения, в том числе в ситуациях неопределенности. Они получат возможность развить способности к разработке нескольких вариантов решений, к поиску нестандартных решений, анализу результатов поиска и выбору наиболее приемлемого решения.

Перечень ключевых межпредметных понятий определяется в ходе разработки основной образовательной программы основного общего образования образовательной организации в зависимости от материально-технического оснащения, используемых методов работы и образовательных технологий.

В соответствии с  $\Phi \Gamma O C$  OOO выделяются три группы универсальных учебных действий: регулятивные, познавательные, коммуникативные.

Регулятивные УУД

1.Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности.

- анализировать существующие и планировать будущие образовательные результаты;
- определять совместно с педагогом критерии оценки планируемых образовательных результатов;
- идентифицировать препятствия, возникающие при достижении собственных запланированных образовательных результатов;
- выдвигать версии преодоления препятствий, формулировать гипотезы, в отдельных случаях -

прогнозировать конечный результат;

- ставить цель и формулировать задачи собственной образовательной деятельности сучетом выявленных затруднений и существующих возможностей;
- обосновывать выбранные подходы и средства, используемые для достижения образовательных результатов.
- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.

Обучающийся сможет:

- определять необходимые действия в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
- обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
- выстраивать жизненные планы на краткосрочное будущее (определять целевые ориентиры, формулировать адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
- выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
- составлять план решения проблемы (описывать жизненный цикл выполнения проекта, алгоритм проведения исследования);
- определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
- описывать свой опыт, оформляя его для передачи другим людям в виде алгоритма решения практических задач;
- планировать и корректировать свою индивидуальную образовательную траекторию.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией.

Обучающийся сможет:

- различать результаты и способы действий при достижении результатов;
- определять совместно с педагогом критерии достижения планируемых результатов и критерии оценки своей учебной деятельности;
- систематизировать (в том числе выбирать приоритетные) критерии достижения планируемых результатов и оценки своей деятельности;
- отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- оценивать свою деятельность, анализируя и аргументируя причины достижения или отсутствия планируемого результата;
- находить необходимые и достаточные средства для выполнения учебных действий в изменяющейся ситуации;
- работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик/показателей результата;
- устанавливать связь между полученными характеристиками результата и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик результата;
- соотносить свои действия с целью обучения.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения.

- определять критерии правильности (корректности) выполнения учебной задачи;
- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя изцели и имеющихся средств;
- оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;

- обосновывать достижимость цели выбранным способом на основе оценки своихвнутренних ресурсов и доступных внешних ресурсов;
- фиксировать и анализировать динамику собственных образовательных результатов.
- 5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности.

Обучающийся сможет:

- анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
- соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы о причинах ее успешности/эффективности или неуспешности/неэффективности, находить способы выхода из критической ситуации;
- принимать решение в учебной ситуации и оценивать возможные последствия принятого решения;
- определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
- демонстрировать приемы регуляции собственных психофизиологических/эмоциональных состояний. Познавательные УУД
- 6. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы.

Обучающийся сможет:

- подбирать слова, соподчиненные ключевому слову, определяющие его признаки исвойства;
- выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных емуслов;
- выделять общий признак или отличие двух или нескольких предметов или явлений и объяснять их сходство или отличия;
- объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
- различать/выделять явление из общего ряда других явлений;
- выделять причинно-следственные связи наблюдаемых явлений или событий, выявлять причины возникновения наблюдаемых явлений или событий;
- строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
- строить рассуждение на основе сравнения предметов и явлений, выделяя при этом ихобщие признаки и различия;
- излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
- самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать иприменять способ проверки достоверности информации;
- объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности;
- выявлять и называть причины события, явления, самостоятельно осуществляя причинно-следственный анализ;
- делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
- 7. Умение создавать, применять и преобразовывать знаки и символы, модели исхемы для решения учебных и познавательных задач.

- обозначать символом и знаком предмет и/или явление;
- определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
- создавать абстрактный или реальный образ предмета и/или явления;
- строить модель/схему на основе условий задачи и/или способа ее решения;
- создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
- переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое и наоборот;
- строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;

- строить доказательство: прямое, косвенное, от противного;
- анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) с точки зрения решения проблемной ситуации, достижения поставленной цели и/или на основе заданных критериев оценки продукта/результата.
- 8. Смысловое чтение.

#### Обучающийся сможет:

- находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
- ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
- устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
- резюмировать главную идею текста;
- преобразовывать текст, меняя его модальность (выражение отношения к содержанию текста, целевую установку речи), интерпретировать текст (художественный и нехудожественный учебный, научно-популярный, информационный);
- критически оценивать содержание и форму текста.
- 9. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации.

### Обучающийся сможет:

- определять свое отношение к окружающей среде, к собственной среде обитания;
- анализировать влияние экологических факторов на среду обитания живых организмов;
- проводить причинный и вероятностный анализ различных экологических ситуаций;
- прогнозировать изменения ситуации при смене действия одного фактора на другойфактор;
- распространять экологические знания и участвовать в практических мероприятиях позащите окружающей среды.
- 10. Развитие мотивации к овладению культурой активного использования словарей, справочников, открытых источников информации и электронных поисковых систем.

### Обучающийся сможет:

- определять необходимые ключевые поисковые слова и формировать корректныепоисковые запросы;
- осуществлять взаимодействие с электронными поисковыми системами, базами знаний, справочниками;
- формировать множественную выборку из различных источников информации для объективизации результатов поиска;
- -соотносить полученные результаты поиска с задачами и целями своей деятельности. Коммуникативные УУД
- 11. Умение организовывать учебное сотрудничество с педагогом и совместную деятельность с педагогом и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение.

- определять возможные роли в совместной деятельности;
- играть определенную роль в совместной деятельности;
- принимать позицию собеседника, понимая позицию другого, различать в его речимнение (точку зрения), доказательства (аргументы);
- определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
- строить позитивные отношения в процессе учебной и познавательной деятельности;
- корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметьвыдвигать контраргументы, перефразировать свою мысль;
- -критически относиться к собственному мнению, уметь признавать ошибочность своегомнения (если оно ошибочно) и корректировать его;
- предлагать альтернативное решение в конфликтной ситуации;
- выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленнойперед группой задачей;
- организовывать эффективное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- устранять в рамках диалога разрывы в коммуникации, обусловленные

непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.

12. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью.

Обучающийся сможет:

- определять задачу коммуникации и в соответствии с ней отбирать и использоватьречевые средства;
- представлять в устной или письменной форме развернутый план собственной деятельности;
- -соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
- высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера врамках диалога;
- принимать решение в ходе диалога и согласовывать его с собеседником;
- -создавать письменные тексты различных типов с использованием необходимых речевыхсредств;
- использовать средства логической связи для выделения смысловых блоков своего выступления;
- использовать вербальные и невербальные средства в соответствии с коммуникативной залачей:
- оценивать эффективность коммуникации после ее завершения.
- 13. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ).
- Обучающийся сможет: целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
- использовать для передачи своих мыслей естественные и формальные языки в соответствии с условиями коммуникации;
- оперировать данными при решении задачи;
- -выбирать адекватные задаче инструменты и использовать компьютерные технологии для решения учебных задач, в том числе для: вычисления, написания писем, сочинений, докладов, рефератов, создания презентаций и др.;
- использовать информацию с учетом этических и правовых норм;
- создавать цифровые ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

## Предметные результаты

- 1) формирование первоначальных систематизированных представлений о веществах, их превращениях и практическом применении; овладение понятийным аппаратом и символическим языком химии;
- 2) осознание объективной значимости основ химической науки как области современного естествознания, химических превращений неорганических и органических веществ как основы многих явлений живой и неживой природы; углубление представлений о материальном единстве мира;
- 3) овладение основами химической грамотности: способностью анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сохранения здоровья и окружающей среды;
- 4) формирование умений устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в микромире, объяснять причины многообразия веществ, зависимость их свойств от состава и строения, а также зависимость применения веществ от их свойств;
- 5) приобретение опыта использования различных методов изучения веществ: наблюдения за их превращениями при проведении несложных химических экспериментов с использованием лабораторного оборудования и приборов;
- б) формирование представлений о значении химической науки в решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катастроф;

#### Выпускник научится:

- характеризовать основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки:
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент»,

«простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую систему химии;

- раскрывать смысл законов сохранения массы веществ, постоянства состава, атомномолекулярной теории;
- различать химические и физические явления;
- называть химические элементы;
- определять состав веществ по их формулам;
- определять валентность атома элемента в соединениях;
- определять тип химических реакций;
- называть признаки и условия протекания химических реакций;
- выявлять признаки, свидетельствующие о протекании химической реакции привыполнении химического опыта;
- составлять формулы бинарных соединений;
- составлять уравнения химических реакций;
- соблюдать правила безопасной работы при проведении опытов;
- пользоваться лабораторным оборудованием и посудой;
- вычислять относительную молекулярную и молярную массы веществ;
- вычислять массовую долю химического элемента по формуле соединения;
- вычислять количество, объем или массу вещества по количеству, объему, массереагентов или продуктов реакции;
- характеризовать физические и химические свойства простых веществ: кислорода иводорода;
- получать, собирать кислород и водород;
- распознавать опытным путем газообразные вещества: кислород, водород;
- раскрывать смысл закона Авогадро;
- раскрывать смысл понятий «тепловой эффект реакции», «молярный объем»;
- характеризовать физические и химические свойства воды;
- раскрывать смысл понятия «раствор»;
- вычислять массовую долю растворенного вещества в растворе;
- приготовлять растворы с определенной массовой долей растворенного вещества;
- называть соединения изученных классов неорганических веществ;
- характеризовать физические и химические свойства основных классов неорганических веществ: оксидов, кислот, оснований, солей;
- определять принадлежность веществ к определенному классу соединений;
- составлять формулы неорганических соединений изученных классов;
- проводить опыты, подтверждающие химические свойства изученных классов неорганических веществ;
- распознавать опытным путем растворы кислот и щелочей по изменению окраскииндикатора;
- характеризовать взаимосвязь между классами неорганических соединений;
- раскрывать смысл Периодического закона Д.И. Менделеева;
- объяснять физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода в периодической системе Д.И. Менделеева;
- объяснять закономерности изменения строения атомов, свойств элементов в пределахмалых периодов и главных подгрупп;
- характеризовать химические элементы (от водорода до кальция) на основе их положения в периодической системе Д.И. Менделеева и особенностей строения их атомов;
- составлять схемы строения атомов первых 20 элементов периодической системы Д.И. Менделеева;
- раскрывать смысл понятий: «химическая связь», «электроотрицательность»;
- характеризовать зависимость физических свойств веществ от типа кристаллической решетки;
- определять вид химической связи в неорганических соединениях;
- изображать схемы строения молекул веществ, образованных разными видами химических связей;
- раскрывать смысл понятий «ион», «катион», «анион», «электролиты», «неэлектролиты», «электролитическая диссоциация», «окислитель», «степень окисления»

«восстановитель», «окисление», «восстановление»;

- определять степень окисления атома элемента в соединении;
- раскрывать смысл теории электролитической диссоциации;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей;
- объяснять сущность процесса электролитической диссоциации и реакций ионногообмена;
- составлять полные и сокращенные ионные уравнения реакции обмена;
- определять возможность протекания реакций ионного обмена;
- проводить реакции, подтверждающие качественный состав различных веществ;
- определять окислитель и восстановитель;
- составлять уравнения окислительно-восстановительных реакций;
- называть факторы, влияющие на скорость химической реакции;
- классифицировать химические реакции по различным признакам;
- характеризовать взаимосвязь между составом, строением и свойствами неметаллов;
- проводить опыты по получению, собиранию и изучению химических свойствгазообразных веществ: углекислого газа, аммиака;
- распознавать опытным путем газообразные вещества: углекислый газ и аммиак;
- характеризовать взаимосвязь между составом, строением и свойствами металлов;
- называть органические вещества по их формуле: метан, этан, этилен, метанол, этанол, глицерин, уксусная кислота, аминоуксусная кислота, стеариновая кислота, олеиновая кислота, глюкоза;
- оценивать влияние химического загрязнения окружающей среды на организм человека;
- грамотно обращаться с веществами в повседневной жизни
- определять возможность протекания реакций некоторых представителей органических веществ с кислородом, водородом, металлами, основаниями, галогенами.

#### Выпускник получит возможность научиться:

- выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- составлять молекулярные и полные ионные уравнения по сокращенным ионным уравнениям;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учетом степеней окисления элементов, входящих в его состав;
- составлять уравнения реакций, соответствующих последовательности превращений неорганических веществ различных классов;
- выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химической реакции;
- использовать приобретенные знания для экологически грамотного поведения в окружающей среде;
- использовать приобретенные ключевые компетенции при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;
- объективно оценивать информацию о веществах и химических процессах;
- критически относиться к псевдонаучной информации, недобросовестной рекламе в средствах массовой информации;
- осознавать значение теоретических знаний по химии для практической деятельности человека;
- создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.

В результате изучения предмета «Химия» у обучающихся 8 класса будут сформированы предметные результаты:

-осознание роли веществ; определять роль различных веществ в природе и технике; объяснять роль веществ в их круговороте; объяснять значение веществ в жизни и хозяйстве человека; перечислять отличительные свойства химических веществ;

-рассмотрение химических процессов: приводить примеры химических процессов вприроде; находить черты, свидетельствующие об общих признаках химических процессов и их различиях;

различать основные химические процессы; использование химических знанийв быту:

- -объяснять мир с точки зрения химии:
- определять основные классы неорганических веществ;
- понимать смысл химических терминов.
- -овладение основами методов познания, характерных для естественных наук:
- -характеризовать методы химической науки (наблюдение, сравнение, эксперимент, измерение) и их роль в познании природы;
- проводить химические опыты и эксперименты и объяснять их результаты.
- -умение оценивать поведение человека с точки зрения химической безопасности по отношению к человеку и природе:
- -использовать знания химии при соблюдении правил использования бытовых химических препаратов; различать опасные и безопасные вещества.

## В результате изучения предмета «Химия» у обучающихся 9 класса будут сформированы предметные результаты:

- освоениеважнейших знаний об основных понятиях и законах химии, химической символике;
- -умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;
- -развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- -воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- -применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека иокружающей среде.
- использовать свое знакомство с химией для осознанного выбора профессии В результате изучения курса ученик должен знать/понимать
- -химическую символику: знаки химических элементов, формулы химических веществ и уравнения химических реакций;
  - -важнейшие химические понятия: химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, химическая связь, вещество, классификация веществ, моль, молярная масса, молярный объем, химическая реакция, классификация реакций, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление;
  - -основные законы химии: сохранения массы веществ, постоянства состава, периодический закон;
  - -уметь называть: химические элементы, соединения изученных классов;
  - -объяснять: физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода, к которым элемент принадлежит в периодической системе
  - Д.И. Менделеева; закономерности изменения свойств элементов в пределах малых периодов и главных подгрупп; сущность реакций ионного обмена;
  - -характеризовать: химические элементы на основе их положения в периодической системе Д.И.Менделеева и особенностей строения их атомов; связь между составом, строением и свойствами веществ; химические свойства основных классов неорганических веществ;
  - -определять: состав веществ по их формулам, принадлежность веществ к определенному классу соединений, типы химических реакций, валентность и степень окисления элемента в соединениях, тип химической связи в соединениях, возможность протекания реакций ионного обмена;
  - -составлять: формулы неорганических соединений изученных классов; схемы строения атомов первых 20 элементов периодической системы Д.И.Менделеева; уравнения химических реакций; -обращатьсяс химической посудой и лабораторным оборудованием;
  - -распознавать опытным путем: кислород, водород, углекислый газ, аммиак; растворы кислот и
  - -вычислять: массовую долю химического элемента по формуле соединения; массовую долю вещества в растворе; количество вещества, объем или массу по количеству вещества, объему или массе реагентов или продуктов реакции;

Обучающийся должен иметь возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

-приготовления растворов заданной концентрации

щелочей, хлорид-, сульфат-, карбонат-ионы;

- -безопасного обращения с веществами и материалами;
- -экологически грамотного поведения в окружающей среде;
- -оценки влияния химического загрязнения окружающей среды на организм человека;

## Содержание учебного предмета «Химия»

Формы обучения: индивидуальная, групповая, коллективная, дистанционная. При обучении учащихся по данной рабочей программе используются следующие методы:

- словесные: рассказ, объяснение, беседа, дискуссия, лекция,
- наглядные: метод иллюстраций, метод демонстраций,
- практические: упражнения, работа с учебником и книгой конспектирование, составление плана текста.

Предусмотрены уроки с использованием ИКТ. Уроки носят развивающий характер.

В системе естественнонаучного образования химия как учебный предмет занимает важное место в познании законов природы, формировании научной картины мира, создании основы химических знаний, необходимых для повседневной жизни, навыков здорового и безопасного для человека и окружающей его среды образа жизни, а также в воспитании экологической культуры.

Успешность изучения химии связана с овладением химическим языком, соблюдением правил безопасной работы при выполнении химического эксперимента, осознанием многочисленных связей химии с другими предметами школьного курса.

Программа включает в себя основы неорганической и органической химии. Главной идеей программы является создание базового комплекса опорных знаний по химии, выраженных в форме, соответствующей возрасту обучающихся.

В содержании данного курса представлены основополагающие химические теоретические знания, включающие изучение состава и строения веществ, зависимости их свойств от строения, прогнозирование свойств веществ, исследование закономерностей химических превращений и путей управления ими в целях получения веществ и материалов.

Теоретическую основу изучения неорганической химии составляет атомно- молекулярное учение, Периодический закон Д.И. Менделеева с краткими сведениями о строении атома, видах химической связи, закономерностях протекания химических реакций.

В изучении курса значительная роль отводится химическому эксперименту: проведению практических и лабораторных работ, описанию результатов ученического эксперимента, соблюдению норм и правил безопасной работы в химической лаборатории.

Реализация данной программы в процессе обучения позволит обучающимся усвоить ключевые химические компетенции и понять роль и значение химии среди других наук о природе.

Изучение предмета «Химия» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоения практического применения научных знаний основано на межпредметных связях с предметами: «Биология», «География», «История», «Питература», «Математика», «Основы безопасности жизнелести» «Русский язык»,

«Литература», «Математика», «Основы безопасности жизнедеятельности», «Русский язык», «Физика», «Экология».

#### Раздел 1. Первоначальные химические понятия

**Темы**. Предмет химии. *Тела и вещества. Основные методы познания: наблюдение, измерение, эксперимент.* Физические и химические явления. Чистые вещества и смеси. Способы разделения смесей. Атом. Молекула. Химический элемент. Знаки химических элементов. Простые и сложные вещества. Валентность. *Закон постоянства состава вещества*. Химические формулы. Индексы. Относительная атомная и молекулярная массы. Массовая доля химического элемента в соединении. Закон сохранения массы веществ. Химические уравнения. Коэффициенты. Условия и признаки протеканияхимических реакций. Моль – единица количества вещества. Молярная масса.

Основные виды деятельности: Устанавливать межпредметные связи. Различать тела и вещества. Различать понятия «атом», «молекула», «химический элемент». Описывать физические и химические явления. Сравнивать свойства веществ. Наблюдать свойства веществ. Сравнивать физические и химические явления. Сопоставлять простые и сложные вещества. Определять валентность атомов в бинарных соединениях. Пользоваться информацией из других источников для подготовки кратких сообщений. Рассчитывать относительную молекулярную массу по формулам веществ. Рассчитывать массовую долю химического элемента в соединении. Рассчитывать молярную массу вещества. Устанавливать простейшие формулы веществ по массовым долям элементов

### Раздел 2. Кислород. Водород.

**Темы.**Кислород – химический элемент и простое вещество. Озон. Состав воздуха. Физические и

химические свойства кислорода. Получение и применение кислорода. *Тепловой эффект химических реакций*. *Понятие об экзо- и эндотермических реакциях*. Водород – химический элемент и простое вещество. Физические и химические свойства водорода. Получение водорода в лаборатории. *Получение водорода в промышленности*. *Применение водорода*. Закон Авогадро. Молярный объем газов. Качественные реакции на газообразные вещества (кислород, водород). Объемные отношения газов при химических реакциях.

Основные виды деятельности: Использовать примеры решения типов задач, задачники с приведенными в них алгоритмами решения задач. Обобщать и систематизировать знания об изученных веществах. Учиться решать исследовательским путем поставленную проблему. Наблюдать превращения изучаемых веществ. Описывать свойства веществ в ходе демонстрационного и лабораторного экспериментов. Учиться раскрывать причинноследственную связь между физическими свойствами изучаемого вещества и способами его собирания. Применять полученные знания при проведении химического эксперимента. Устанавливать связь между свойствами вещества и его применением.

## Раздел 3. Вода. Растворы

**Темы.** Вода в природе. Круговорот воды в природе. Физические и химические свойства воды. Растворы. Растворымость веществ в воде. Концентрация растворов. Массовая долярастворенного вещества в растворе.

**Основные виды деятельности:** Наблюдать превращения изучаемых веществ. Описывать свойства веществ в ходе демонстрационного и лабораторного экспериментов. Соблюдать правила техники безопасности. Учиться раскрывать причинно-следственную зависимость между физическими свойствами изучаемого вещества и способами его собирания. Применять полученные знания при проведении химического эксперимента. Устанавливать связь между свойствами вещества и его применением. Отбирать необходимую информацию из других источников Наблюдать превращения изучаемых веществ.

## Раздел 4. Основные классы неорганических соединений

Темы. Оксиды. Классификация. Номенклатура. Физические свойства оксидов. Химические свойства оксидов. Получение и применение оксидов. Основания. Классификация. Номенклатура. Физические свойства оснований. Получение оснований. Химические свойства оснований. Реакция нейтрализации. Кислоты. Классификация. Номенклатура. Физические свойства кислот. Индикаторы. Изменение окраски индикаторов в различных средах. Соли. Классификация. Номенклатура. Физические свойства солей. Получение и применение солей. Химические свойства солей. Генетическая связь между классами неорганических соединений. Проблема безопасного использования веществ и химических реакций в повседневной жизни. Токсичные, горючие и взрывоопасные вещества. Бытовая химическая грамотность.

Основные виды деятельности: Наблюдать физические и химические превращения изучаемых веществ. Описывать химические реакции, наблюдаемые в ходе демонстрационного и лабораторного экспериментов. Делать выводы из результатов проведенных химических опытов. Классифицировать изучаемые вещества. Составлять формулы оксидов, кислот, оснований, солей. Характеризовать состав и свойства веществ основных классов неорганических соединений. Записывать уравнения химических реакций. Осуществлять генетическую связь между классами неорганических соединений.

## Раздел 5. Строение атома. Периодический закон и периодическая система химических элементов Д.И. Менделеева

**Темы.** Строение атома: ядро, энергетический уровень. *Состав ядра атома: протоны, нейтроны. Изотоны.* Периодический закон Д.И. Менделеева. Периодическая система химических элементов Д.И. Менделеева. Физический смысл атомного (порядкового) номера химического элемента, номера группы и периода периодической системы. Строение энергетических уровней атомов первых 20 химических элементов периодической системы Д.И. Менделеева. Закономерности изменения свойств атомов химических элементов и их соединений на основе положения в периодической системе Д.И. Менделеева и строения атома. Значение Периодического закона Д.И. Менделеева.

**Основные виды деятельности:** Использовать межпредметные связи. Моделировать строение атома. Определять понятия «химический элемент», «порядковый номер», «массовое число», «изотоп», «относительная атомная масса», «электронная оболочка», «электронный слой». Делать умозаключения о характере изменения свойств химических

элементов с увеличением зарядов атомных ядер. Пользоваться информацией из других источников для подготовки кратких сообщений.

## Раздел 6. Строение веществ. Химическая связь

**Темы.** Электроотрицательность атомов химических элементов. Ковалентная химическая связь: неполярная и полярная. Понятие о водородной связи и ее влиянии на физические свойства веществ на примере воды. Ионная связь. Металлическая связь. Типы кристаллических решеток (атомная, молекулярная, ионная, металлическая). Зависимость физических свойств веществ от типа кристаллической решетки.

Основные виды деятельности: Разграничивать понятия «химическая связь», «кристаллическая решетка». Обобщать понятия «ковалентная неполярная связь», «ковалентная полярная связь», «ионная связь», «ионная кристаллическая решетка», «атомная кристаллическая решетка», «молекулярная кристаллическая решетка». Уметь составлять схемы образования веществ с различными видами химической связи. Уметь характеризовать свойства вещества, зная его кристаллическую решетку. Моделировать строение веществ с ковалентной и ионной связью. Определять степень окисления элементов. Составлять формулы веществ по степени окисления элементов.

### Раздел 7. Химические реакции

Темы. Понятие о скорости химической реакции. Факторы, влияющие на скорость химической реакции. Понятие о катализаторе. Классификация химических реакций по различным признакам: числу и составу исходных и полученных веществ; изменению степеней окисления атомов химических элементов; поглощению или выделению энергии. Электролитическая диссоциация. Электролиты и неэлектролиты. Ионы. Катионы и анионы. Реакции ионного обмена. Условия протекания реакций ионного обмена. Электролитическая диссоциация кислот, щелочей и солей. Степень окисления. Определение степени окисления атомов химических элементов в соединениях. Окислитель. Восстановитель. Сущность окислительно-восстановительных реакций. Основные виды деятельности: Обобщать понятия «окислитель», «окисление», «восстановитель», «восстановительных реакций. Расставлять коэффициенты методом электронного баланса. Устанавливать внутри- и межпредметные связи. Составлять классификационные схемы, сравнительные и обобщающие таблицы

### Раздел 8. Неметаллы IV – VII групп и их соединения

Темы.Положение неметаллов в периодической системе химических элементов Д.И. Менделеева. Общие свойства неметаллов. Галогены: физические и химические свойства. Соединения галогенов: хлороводород, хлороводородная кислота и ее соли. Сера: физические и химические свойства. Соединения серы: сероводород, сульфиды, оксиды серы. Серная, сернистая и сероводородная кислоты и их соли. Азот: физические и химические свойства. Аммиак. Соли аммония. Оксиды азота. Азотная кислота и ее соли. Фосфор: физические и химические свойства. Соединения фосфора: оксид фосфора (V), ортофосфорная кислота и ее соли. Углерод: физические и химические свойства. Аллотропия углерода: алмаз, графит, карбин, фуллерены. Соединения углерода: оксиды углерода (II) и (IV), угольная кислота и ее соли. Кремний и его соединения. Основные виды деятельности: Знатьположение неметаллов в ПСХЭ Д.И. Менделеева; строение

Основные виды деятельности: Знатьположение неметаллов в ПСХЭ Д.И. Менделеева; строение атомов неметаллов, физические свойства. Уметь характеризовать свойства неметаллов; - давать характеристику элементам-неметаллам на основании их положения в ПСХЭ; -сравнивать неметаллы с металлами - характеризовать химический элементы водород, галогены по их положению в ПСХЭ; - составлять уравнения реакций (ОВР) химических свойств водорода, галогенов; - распознавать опытным путем раствор соляной кислоты и ее солей.

## Раздел 9. Металлы и их соединения

**Темы.** Положение металлов в периодической системе химических элементов Д.И. Менделеева. Металлы в природе и общие способы их получения. Общие физические свойства металлов. Общие химические свойства металлов: реакции с неметаллами, кислотами, солями. Электрохимический ряд напряжений металлов. Щелочные металлы и их соединения. Щелочноземельные металлы и их соединения. Алюминий. Амфотерность оксида и гидроксида алюминия. Железо. Соединения железа и их свойства: оксиды, гидроксиды и соли железа (II и III).

**Основные виды деятельности:** Знать положение элементов металлов в ПС; - физическиесвойства металлов; пластичность, электро-и теплопроводность, металлический блеск, твердость, плотность;

общие химические свойства металлов: взаимодействие с неметаллами, водой, кислотами, солями; классификацию сплавов на основе черных (чугун и сталь) и цветных металлов, характеристику физических свойств металлов; причины и виды коррозии металлов. Уметь характеризовать металлы на основе их в Периодической системе Д.И. Менделеева и особенностей строения их атомов; использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для безопасного обращения с металлами; экологически грамотного поведения в окружающей среде; критической оценки информации о веществах, используемых в быту; записывать уравнения химических реакций взаимодействия с неметаллами, кислотами, солями, используя электрохимический ряд металлов для химических свойств

## Раздел 10. Первоначальные сведения об органических веществах

**Темы**. Первоначальные сведения о строении органических веществ. Углеводороды: метан, этан, этилен. *Источники углеводородов: природный газ, нефть, уголь*. Кислородсодержащие соединения: спирты (метанол, этанол, глицерин), карбоновые кислоты (уксусная кислота, аминоуксусная кислота, стеариновая и олеиновая кислоты). Биологически важные вещества: жиры, глюкоза, белки. *Химическое загрязнение окружающей среды и его последствия*.

Основные виды деятельности: Знать особенности органических соединений; валентность и степень окисления элементов в соединениях; понятия: предельные углеводороды, гомологический ряд предельных углеводородов, изомерия; иметь представление о биологически важных органических веществах: жирах как сложных эфирах глицерина и жирных кислот Уметь: определять изомеры и гомологи. записывать структурные формулы изомеров и гомологов; - давать названия изученным веществам. называть изученные вещества; характеризовать химические свойства органических соединений характеризовать типичные свойства уксусной кислоты; использовать приобретенные знания для экологически грамотного поведения в окружающей среде; использовать приобретенные ключевые компетенции при выполнении учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ.

# **Тематическое планирование 8 класс**

#### Раздел 1. Первоначальные химические понятия (24)

Темы. Предмет химии. Химия как часть естествознания. Вещества и их свойства. Чистые вещества и смеси. Способы очистки веществ: отстаивание, фильтрование, выпаривание, кристаллизация, дистилляция, хроматография. Физические и химические явления. Химические реакции. Признаки химических реакций и условия возникновения и течения химических реакций. Атомы и молекулы. Вещества молекулярного и немолекулярного строения. Качественный и количественный состав вещества. Простые и сложные вещества. Химический элемент. Язык химии. Знаки химических элементов, химические формулы. Закон постоянства состава веществ. Атомная единица массы. Относительная атомная и молекулярная массы. Количество вещества. Моль – единица количества вещества. Молярная масса. Валентность химических элементов. Определение валентности элементов по формулам их соединений. Составление химических формул по валентности. Атомно-молекулярное учение. Закон сохранения массы веществ. Химические уравнения. Классификация химических реакций по числу и составу исходных и полученных веществ. Демонстрации. Ознакомление с образцами простых и сложных веществ. Способы очистки веществ: кристаллизация, дистилляция, хроматография. Опыты, подтверждающие закон сохранения массы веществ. Химические соединения количеством вещества 1 моль. Модель молярного объема газов. Лабораторные опыты. Рассмотрение веществ с различными физическими свойствами. Разделение смеси с помощью магнита. Примеры физических и химических явлений. Реакции, иллюстрирующие основные признаки характерных реакций. Разложение основного карбоната меди(II). Реакция замещения меди железом.

#### Практические работы

Правила техники безопасности при работе в химическом кабинете. Ознакомление с лабораторным оборудованием. Очистка поваренной соли.

**Расчетные задачи**. Вычисление относительной молекулярной массы вещества по формуле. Вычисление массовой доли элемента в химическом соединении. Установление простейшей формулы вещества по массовым долям элементов. Вычисления по химическим уравнениям массы или количества вещества по известной массе или количеству одного из вступающих или получающихся в реакции веществ.

Основные виды деятельности: Использовать межпредметные связи. Знакомиться с лабораторным

оборудованием. Наблюдать демонстрируемые и самостоятельно проводимые опыты. Описывать свойства изучаемых веществ на основе наблюдений за их превращениями. Учиться проводить химический эксперимент. Соблюдать технику безопасности. Использовать метод сравнения при характеристике свойств веществ. слушание объяснений учителя., слушание и анализ

выступлений своих товарищей, самостоятельная работа с учебником, решение химических задач, выполнение заданий по разграничению понятий, систематизация учебного материала, наблюдение за демонстрациями учителя, анализ графиков, таблиц, схем, объяснение наблюдаемых явлений, анализ проблемных ситуаций, работа с раздаточным материалом, выполнение работ практикума, сборка приборов из готовых деталей и конструкций., моделирование и конструирование.

## Раздел 2. Кислород. Оксиды. Горение (5)

**Темы.** Кислород. Нахождение в природе. Физические и химические свойства. Получение, применение. Круговорот кислорода в природе. Горение. Оксиды. Воздух и его состав. Медленное окисление. Тепловой эффект химических реакций. Топливо и способы его сжигания. Защита атмосферного воздуха от загрязнений.

**Демонстрации.** Получение и собирание кислорода методом вытеснения воздуха и воды. Определение состава воздуха. Коллекции нефти, каменного угля и продуктов их переработки.

Лабораторные опыты. Ознакомление с образцами оксидов.

Практическая работа. Получение и свойства кислорода.

Расчетные задачи. Расчеты по термохимическим уравнениям.

Основные виды деятельности. Использовать примеры решения типовых задач

Обобщать и систематизировать знания об изученных веществах. Учиться решать исследовательским путем поставленную проблему. Наблюдать превращения изучаемых веществ. Описывать свойства кислорода и оксидов в ходе демонстрационного и лабораторного экспериментов. Учиться раскрывать причинноследственную связь между физическими свойствами изучаемого вещества и способами его собирания. Применять полученные знания при проведении химического эксперимента. Устанавливать связь между свойствами вещества и его применением. Отбирать необходимую информацию из разных источников.

### Раздел 3. Водород (4)

**Темы.** Водород. Нахождение в природе. Физические и химические свойства. Водород — восстановитель. Получение, применение.

Меры предосторожности при работе с водородом.

Демонстрации. Получение водорода в аппарате Киппа, проверка водорода на чистоту, горение водорода, собирание водорода методом вытеснения воздуха и воды.

Лабораторные опыты. Получение водорода и изучение его свойств. Взаимодействие водорода с оксидом меди (II).

**Основные виды деятельности**. Наблюдать превращения изучаемых веществ. Описывать свойства веществ в ходе демонстрационного и лабораторного экспериментов. Учиться раскрывать причинно-следственную связь между физическими свойствами изучаемого вещества и способами его собирания. Применять полученные знания при проведении химического эксперимента. Устанавливать связь между свойствами вещества и его применением. Отбирать необходимую информацию из разных источников.

## Раздел 4. Растворы. Вода (8)

**Темы.** Вода — растворитель. Растворимость веществ в воде. Определение массовой доли растворенного вещества. Вода. Методы определения состава воды — анализ и синтез. Физические и химические свойства воды. Вода в природе и способы ее очистки. Круговорот воды в природе. **Демонстрации.** Анализ воды. Синтез воды.

**Практическая работа.** Приготовление растворов солей с определенной массовой долей растворенного вещества.

Расчетные задачи. Нахождение массовой доли растворенного вещества в растворе. Вычисление массы растворенного вещества и воды для приготовления раствора определенной концентрации. Основные виды деятельности: Описывать физические и химические свойства воды. Знать способы очистки воды. Составлять классификационные и сравнительные таблицы и схемы, опорные конспекты. Вычислять по химическим уравнениям массу или количество вещества по известной массе или количеству вещества одного из вступающих или получающихся в реакции веществ. Определять массовую долю растворённого вещества.

## Раздел 5. Основные классы неорганических соединений (10)

**Темы**. Оксиды. Классификация. Основные и кислотные оксиды. Номенклатура. Физические и химические свойства. Получение. Применение.

Основания. Классификация. Номенклатура. Физические и химические свойства. Реакция нейтрализации. Получение оснований и их применение.

Кислоты. Классификация. Номенклатура. Физические и химические свойства. Вытеснительный ряд металлов Н. Н. Бекетова. Применение кислот.

Соли. Классификация. Номенклатура. Физические и химические свойства. Способы получения солей.

Генетическая связь между основными классами неорганических соединений.

**Демонстрации.** Знакомство с образцами оксидов, кислот, оснований и солей. Нейтрализация щелочи кислотой в присутствии индикатора.

Лабораторные опыты. Опыты, подтверждающие химические свойства кислот, оснований.

**Практическая работа.** Решение экспериментальных задач по теме «Основные классы неорганических соединений».

Основные виды деятельности: Исследовать свойства изучаемых веществ. Наблюдать физические и химические превращения изучаемых веществ. Описывать химические реакции, наблюдаемые в ходе демонстрационного и лабораторного экспериментов. Делать выводы из результатов проведенных химических опытов. Классифицировать изучаемые вещества. Составлять формулы оксидов, кислот, оснований, солей. Характеризовать состав и свойства веществ основных классов неорганических соединений. Записывать уравнения химических реакций. Осуществлять генетическую связь между классами неорганических соединений

# Раздел 6. Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома (7)

**Темы.** Первые попытки классификации химических элементов. Понятие о группах сходных элементов. Периодический закон Д. И. Менделеева. Периодическая таблица химических элементов. Группы и периоды. Короткий и длинный варианты периодической таблицы. Значение периодического закона. Жизнь и деятельность Д. И. Менделеева.

Строение атома. Состав атомных ядер. Электроны. Изотопы. Строение электронных оболочек атомов первых 20 элементов периодической системы Д. И. Менделеева.

Лабораторные опыты. Взаимодействие гидроксида цинка с растворами кислот и щелочей.

Основные виды деятельности: Классифицировать изученные химические элементы и их соединения. Сравнивать свойства веществ, принадлежащих к разным классам; химические элементы разных групп. Устанавливать внутри- и межпредметные связи. Описывать и характеризовать структуру таблицы «Периодическая система химических элементов». Периодический закон Д.И. Менделеева. Физический смысл атомного (порядкового) номера химического элемента, номера группы и периода периодической системы. Закономерности изменения свойств атомов химических элементов и их соединений на основе положения в периодической системе Д.И. Менделеева и строения атома. Значение Периодического закона Д.И. Менделеева. элементов Д.И. Менделеева. Различать периоды, группы, главные и побочные подгруппы. Характеризовать химические элементы по положению в Периодической системе Д.И. Менделеева. Структурировать материал о жизни и деятельности Д.И. Менделеева, об утверждении учения о периодичности. Отбирать информацию из других источников для подготовки кратких сообщений.

## Раздел 7. Строение веществ. Химическая связь (7)

**Темы.** Электроотрицательность химических элементов. Основные виды химической связи: ковалентная неполярная, ковалентная полярная, ионная. Валентность элементов в свете электронной теории. Степень окисления. Правила определения степени окисления элементов. Окислительновосстановительные реакции.

Кристаллические решетки: ионная, атомная и молекулярная. Кристаллические и аморфные вещества. Зависимость свойств веществ от типов кристаллических решеток.

**Демонстрации.** Ознакомление с моделями кристаллических решеток ковалентных и ионных соединений. Сопоставление физико-химических свойств соединений с ковалентными и ионными связями.

Основные виды деятельности: Разграничивать понятия «химическая связь», «кристаллическая решетка». Обобщать понятия «ковалентная неполярная связь», «ковалентная полярная связь», «ионная связь», «ионная кристаллическая решетка», «атомная кристаллическая решетка», «молекулярная кристаллическая решетка». Уметь составлять схемы образования веществ с различными видами химической связи. Уметь характеризовать свойства вещества, зная его кристаллическую решетку. Моделировать строение веществ с ковалентной и ионной связью. Определять степень окисления элементов. Составлять формулы веществ по степени окисления элементов.

### Тема 8. Закон Авогадро. Молярный объем газов (3)

**Темы**. Закон Авогадро. Молярный объем газов. Относительная плотность газов. Объемные отношения газов при химических реакциях.

Расчетные задачи. Объемные отношения газов при химических реакциях.

Вычисления по химическим уравнениям массы, объема и количества вещества одного из продуктов реакции по массе исходного вещества, объему или количеству вещества, содержащего определенную долю примесей.

Основные виды деятельности: знать формулировку закона Авогадро. Уметь решать задачи на определение объёмных отношений газов при химических реакциях, с использованием понятий « молярный объём газов», «относительная плотность газов».

#### 9 класс

## Раздел 1.Классификация химических реакций (4)

**Темы**. Окислительно – восстановительные реакции. Тепловой эффект химических реакций. Скорость химических реакций. Обратимые реакции. Понятие о химическом равновесии.

Практическая работа. Изучение влияния условий проведения химической реакции на её скорость.

Основные виды деятельности: Обобщать понятия «окислитель», «окисление», «восстановитель», «восстановитель». Распознавать уравнения окислительно- восстановительных реакций. Расставлять коэффициенты методом электронного баланса. Устанавливать внутри- и межпредметные связи. Составлять классификационные схемы, сравнительные и обобщающие таблицы

## Раздел 2. Электролитическая диссоциация (10)

**Темы.** Электролиты и неэлектролиты. Электролитическая диссоциация веществ в водных растворах. Ионы Катионы и анионы. Электролитическая диссоциация кислот, щелочей и солей. Сильные и слабые электролиты. Степень диссоциации. Реакции ионного обмена. Окислительно-восстановительные реакции. Окислитель. Восстановитель. Гидролиз солей.

**Демонстрации**. Испытание веществ на электронную проводимость Движение ионов в электрическом поле. **Лабораторные опыты.** Реакции обмена между растворами электролитов.

**Практическая работа.** Решение экспериментальных задач по теме «Электролитическая диссоциация». Контрольная работа по теме «Электролитическая диссоциация»

**Основные виды деятельности** Знать понятия электролитическая диссоциация, катион, анион. Уметь составлять уравнения диссоциации кислот, солей, щелочей, электронный баланс, определять окислитель и восстановитель.

## Раздел 3. Галогены (5)

**Темы.** Положение галогенов в периодической таблице и строение их атомов. Хлор. Физические и химические свойства хлора. Применение. Хлороводород. Соляная кислота и ее соли. Сравнительная характеристика галогенов.

**Демонстрации**. Знакомство с образцами природных хлоридов. Знакомство с физическими свойствами галогенов. Получение хлороводорода и его растворение в воде.

**Лабораторные опыты.** Распознавание соляной кислоты, хлоридов, бромидов, иодидов и иода. Вытеснение галогенов друг другом из раствора их соединений.

Практическая работа. Получение соляной кислоты и изучение ее свойств.

**Основные виды деятельности:** Использовать знания для составления характеристики естественного семейства галогенов. Наблюдать превращения изучаемых веществ. Описывать свойства веществ в ходе демонстрационного и лабораторного экспериментов. Устанавливать связь между свойствами вещества и его применением. Устанавливать внутри- и межпредметные связи

## Раздел 4. Кислород и сера (7)

**Темы**. Положение кислорода и серы в ПСХЭ, строение их атомов. Аллотропия кислорода — озон. Сера. Аллотропия серы. Физические и химические свойства. Нахождение в природе. Применение серы. Оксид серы (4). Сероводородная и сернистая кислоты и их соли. Оксид серы (VI). Серная кислота и ее соли. Окислительные свойства серной кислоты. Понятие о скорости химической реакции. Катализаторы.

**Демонстрации**: Аллотропия кислорода и серы. Знакомство с образцами природных соединений серы. **Лабораторные опыты.** Распознавание сульфат – ионов, сульфит-ионов и сульфид – ионов в растворе.

**Практическая работа.** Решение экспериментальных задач по теме «Кислород и сера»

**Расчетные задачи**. Вычисления по химическим уравнениям массы (количества, объема) вещества по известной массе (количеству, объему)

одного из вступивших или получающихся в результате реакции веществ.

Основные виды деятельности: Знать особенности строения атомов подгруппы; свойства серной кислоты в свете представлений ТЭД; окислительные свойства концентрированной серной кислоты в свете ОВР; Уметь характеризовать взаимосвязь между составом, строением и свойствами неметаллов; проводить качественную реакцию на сульфат -ион -записывать уравнения реакций в ионном виде и с точки зрения ОВР концентрированной серной кислоты.

## Раздел 5. Азот и фосфор (8)

нитратов, фосфатов.

**Темы**.Положение азота и фосфора в ПСХЭ, строение их атомов. Азот, физические и химические свойства, получение и применение. Круговорот азота в природе. Аммиак: физические и химические свойства, получение и применение. Соли аммония . Оксиды азота (2) и (4). Азотная кислота и ее соли. Окислительные свойства азотной кислоты. Фосфор. Аллотропия фосфора. Физические и химические свойства фосфора. Оксид фосфора (V). Ортофосфорная кислота и ее соли. Минеральные удобрения. **Демонстрации.** Получение аммиака и его растворение в воде. Ознакомление с образцами природных

**Лабораторные опыты.** Взаимодействие солей аммония со щелочами. Ознакомление с азотными и фосфорными удобрениями.

Практические работы. Получение аммиака и изучение его свойств

Основные виды деятельности. Знать особенности строения атомов подгруппы; свойства азотной кислоты в свете представлений ТЭД; окислительные свойства раствора и концентрированной азотной кислоты в свете OBP; качественные реакции на аммиак, соединения азотной и фосфорной кислот. Уметь; проводить качественную реакцию на нитрат- и фосфат-ионы -записывать уравнения реакций в ионном виде и с точки зрения OBP; изучению химических свойств газообразных веществ: аммиака; осознавать значение теоретических знаний по химии для практической деятельности человека; создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.

## Раздел 6. Углерод и кремний (10)

**Темы**. Положение углерода и кремния в ПСХЭ, строение их атомов. Углерод, аллотропные модификации, физические и химические свойства углерода. Круговорот углерода в природе. Угарный газ, свойства и физиологическое действие на организм. Углекислый газ. Угольная кислота и ее соли. Кремний. Оксид кремния. Кремниевая кислота и ее соли. Стекло. Цемент.

**Демонстрации**. Кристаллическая решетка угля и графита. Знакомство с образцами природных карбонатов и силикатов. Ознакомление с видами стекла.

**Лабораторные опыты.** Ознакомление со свойствами и взаимопревращениями карбонатов и гидрокарбонатов. Качественная реакция на карбонат – и силикат – ион.

**Практическая работа.** Получение оксида углерода (IV) и изучение его свойств.

Контрольная работа «Углерод и кремний»

**Основные виды деятельности:** Знать особенности строения атомов подгруппы; - свойства угольной и кремниевой кислот в свете представлений ТЭД; качественные реакции на соединения угольной и кремниевой кислот. Уметь; - проводить качественную реакцию на карбонат- и силикат-ионы -записывать уравнения реакций в ионном виде и с точки зрения OBP ,проводить опыты по получению, собиранию и изучению химических свойств газообразных веществ: углекислого газа, распознавать опытным путем газообразные вещества (углекислый газ) и растворы веществ.

#### Раздел 7. Общие свойства металлов (12)

Темы. Положение металлов в ПСХЭ Д.И.Менделеева. Металлическая связь. Физические и химические свойства металлов. Ряд напряжения металлов. Понятие о металлургии. Способы получения металлов. Сплавы (сталь, чугун, дюралюминий, бронза). Проблемы безотходного производства в металлургии и охрана окружающей среды. Щелочные металлы. Положение щелочных металлов в периодической системе и строение атомов. Нахождение в природе. Физические и химические свойства. Применение щелочных металлов и их соединений. Кальций и его соединения. Жесткость воды и способы ее устранения. Алюминий. Положение алюминия в периодической системе и строение его атома. Нахождение в природе. Физические и химические и химические свойства алюминия. Амфотерность оксида и гидроксида алюминия. Железо. Положение железа в периодической системе и строение его атома. Нахождение в природе. Физические и химические свойства железа. Оксиды, гидроксиды и соли железа (II) и железа (III)

Демонстрации. Знакомство с образцами важнейших соединений натрия, калия, природных соединений кальция, рудами железа, соединениями алюминия. Взаимодействие щелочных, щелочноземельных металлов и алюминия с водой. Сжигание железа в кислороде и хлоре.

**Лабораторные опыты**. Получение гидроксида алюминия и взаимодействие его с кислотами и щелочами. Получение гидроксидов железа (2) и (3) и взаимодействие их с кислотами и щелочами.

Практические работы Решение экспериментальных задач по теме «Металлы».

**Расчетные задачи.** Вычисление по химическим уравнениям массы, объема или количества вещества одного из продуктов реакции по массе исходного вещества, объему или количеству вещества, содержащего определенную долю примесей.

Основные виды деятельности: Знать положение элементов металлов в ПС; физические свойства металлов; пластичность, электро-и теплопроводность, металлический блеск, твердость, плотность; общие химические свойства металлов: взаимодействие с неметаллами, водой, кислотами, солями; классификацию сплавов на основе черных (чугун и сталь) и цветных металлов, характеристику физических свойств Ме; - причины и виды коррозии металлов. Уметь характеризовать металлы на основе их в Периодической системе Д.И. Менделеева и особенностей строения их атомов; использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

### Раздел 8. Органическая химия. (10)

**Темы.** Первоначальные сведения о строении органических веществ. Основные положения теории органических соединений А.М. Бутлерова. Изомерия. Упрощенная классификация органических соединений. Предельные углеводороды. Метан, этан. Физические и химические свойства. Применение. Непредельные углеводороды. Этилен: физические и химические свойства.

Ацетилен. Диеновые углеводороды. Понятия о циклических углеводородах.

Природные источники углеводородов, их значимость. Защита атмосферного воздуха от загрязнений. Одноатомные спирты. Метанол. Этанол. Физические свойства. Физиологическое действие спиртов на организм. Применение. Многоатомные спирты. Этиленгликоль. Глицерин. Применение. Муравьиная и уксусная кислоты. Физические свойства. Применение. Высшие карбоновые кислоты. Жиры. Глюкоза, сахароза — важнейшие представители углеводов. Нахождение в природе. Фотосинтез. Роль глюкозы в питании и укреплении здоровья. Крахмал и целлюлоза — природные полимеры. Нахождение в природе. Применение. Белки — биополимеры. Состав белков. Функции белков. Роль белков в питании. Понятие о ферментах и гормонах. Полимеры — высокомолекулярные соединения. Полиэтилен. Полипропилен. Поливинилхлорид. Применение полимеров. Химия и здоровье. Лекарства.

**Демонстрации.** Модели молекул органических соединений. Горение метана и обнаружение продуктов горения. Горение этилена и обнаружение продуктов горения. Качественная реакция на этилен. Образцы нефти и продуктов их переработки. Итоговая контрольная работа.

Лабораторные опыты. Этилен, его получение, свойства.

Расчетная задача. Установление простейшей формулы вещества по массовым долям элементов. безопасного обращения с металлами; экологически грамотного поведения в окружающей среде; критической оценки информации о веществах, используемых в быту; записывать уравнения химических реакций взаимодействия с неметаллами, кислотами, солями, используя электрохимический ряд металлов для химических свойств - описывать свойства и области применения различных металлов и сплавов; объяснять и применять доступные способы защиты от коррозии металлов в быту.

Основные виды деятельности: Знать особенности органических соединений; валентность и степень окисления элементов в соединениях; понятия: предельные углеводороды, гомологический ряд предельных углеводородов, изомерия; иметь представление о биологически важных органических веществах: жирах как сложных эфирах глицерина и жирных кислот Уметь: определять изомеры и гомологи. записывать структурные формулы изомеров и гомологов; давать названия изученным веществам. - называть изученные вещества; характеризовать химические свойства органических соединений, характеризовать типичные свойства уксусной кислоты; использовать приобретенные знания для экологически грамотного поведения в окружающей среде; - использовать приобретенные ключевые компетенции при выполнении проектов и учебно- исследовательских задач по изучению свойств, способов получения и распознавания веществ